Harry‘s GPS LapTimer
Train the Trainer Session April 09 2015

Disclaimer: This documentation includes snapshots from LapTimer’s GrandPrix Edition running iOS7. Availability of views, functionality, and layout may differ in production versions. As iOS and Android versions will converge over time, we have chosen to show one platform only.
Why a Smartphone Based Lap Timer?

Summary

- Processing power available allows **superior functionality**
- Display quality and **screen resolutions** are compelling
- **All sensors on board** for entry level data recording
- **Video** integration and **overlaying included**
- Connectivity allows immediate **sharing with friend**
- Weekend experience can be carried along
- Allows **competitive experience** and pro challenges
- **Sensor quality** shortfalls can be compensated for no money
- System can be expanded with raising requirements
- In general: "value for money" is extremely high
Quick Reference

Prepare (1)

1. Personalize **Lap Timer** by entering your **Driver ID**. Then specify a vehicle. Be sure to select the right type (e.g. Car or Motorbike)!

2. Select **Load Track** for new track locations and configurations. Or set up your own track using **New Autocross** or **New Track**.

NB: in case an OBD adapter is attached, it is mandatory to define gear ratios and wheel sizes for you vehicles. Otherwise, gears cannot be calculated.

NB: in case you do not see your track, make sure you have selected "All" and not "Near By" in the top. The later will display track nearby only.
Quick Reference
Prepare (2)

3
Use a stable mount and a power supply. Choose position with best possible GPS accuracy. Ideally, add an external GPS.

NB: never use Lap Timer without an external power supply. Even new phone batteries will be drained within 2 hours.

4
Attach your phone according to one of 4 valid mounting presets or let Lap Timer calibrate orientation individually.

The latest version of Lap Timer comes with presets replacing the precise, but sensible individual calibration. Lap Timer will select the preset automatically.
Quick Reference

Race (1)

Be sure **Lap Timer**'s **System Status** shows an overall rating **All Set**. A red alert should not be ignored—press it to get help.

Select a timer view (e.g. **Timer** or **Speedo**) before leaving the pits. For video, press the **Video** button.

NB: please make sure the system status is green / no alert is shown directly before leaving the pits.

NB: the recommended view for driving is **Timer**. It has an ergonomic design dedicated to on track operation.
Quick Reference
Race (2)

Back in the pits, Cancel the cool down lap. This will purge an incomplete lap entry from Lap List and finish video recording.

- Lap Timer submits the position on track (with Driver ID) constantly. This allows others (and trainers) to monitor users (Online View).
- When finishing a lap, the lap time is submitted to the server automatically for analysis (e.g. regularity penalties).
- This works in real time provided an Internet connection is available.
- Otherwise, data is queued and re-submitted once the device has access to the Internet again. Bandwidth needed is extremely low.
- In case this doesn’t work, times can be resent (Lap Details / Hall of Fame).
Quick Reference

Analysis

Select any lap from Lap List and follow Data Recordings to analyse your drive using the many built-in charts and graphs.

Select any lap from Lap List and press Overlay to add telemetry to your video ready for upload to YouTube.

Please read the "Help Users to Read Their Data" section for more details.
The remainder of this slide deck provides background information on Lap Timer operation. It is not an introduction on user level. Instead, it provides information to trouble shoot issues and to help un-trained users to use the system efficiently. In addition to best practices and caveats, it includes additional information to use the analytics capabilities built into all Lap Timer editions.
Train the Trainer

Agenda

1. Basic concepts of GPS based lap timers
2. Prepare Lap Timer for operation
3. Help users to read their data
4. Q&A
Basic concepts of GPS based lap timers

Introduction

• Definition (Wikipedia):
 The Global Positioning System (GPS) is a space-based satellite navigation system that provides location and time information in all weather conditions, anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. The system provides critical capabilities to military, civil and commercial users around the world. It is maintained by the United States government and is freely accessible to anyone with a GPS receiver.

• GPS sensors deliver a sequence of distinct "fixes" at a sensor specific rate (consumer devices: 1 – 10 Hz)

• Accuracy depends on the number and geometry of satellites locked, as well as on error correction capabilities

• Accuracies delivered can be as good as 1.5 meters (DGPS) for consumer level devices, but are guaranteed for 95% of all fixes only

• Alternatives: GLONASS (Russian), Galileo (EU)
Basic concepts of GPS based lap timers

Introduction to Track Sets

- **Set of positions** defining a track configuration
- Made up from
 - Triggers (Stop / Go, Splits, ...)
 - Points of Interest
 - Others
- Triggers define a **position** Lap Timer should take an action when passed
- To make Lap Timer aware of a track, the **track set** needs to be loaded
- Only one **track configuration** must be loaded **at a time**

(c) 2014 Harald Schlangmann
Basic concepts of GPS based lap timers

Timing accuracy for 1 Hz GPS devices

Interpolation(*)

- calculate the position of the perpendicular projection of stop/go to the line driven to receive a position fix_v
- calculate the distance d_n between fix_n and fix_{n+1}, as well as the distance d_v between fix_n and the fix_v
- assuming a constant acceleration and $v_i = speed@fix_i$
- $a = \delta v/ \delta t = (v_{n+1} - v_n) / 1$ second
- calculate time between fix_n and fix_v to adjust fix_n time
- $t_v = (\sqrt{v_n^2 + 2 a d_v} - v_n) / a \quad \text{for} \quad a \neq 0$

At 4 meters accuracy, and typical speed characteristics for start / finish lines, this results in accuracy better than 0.05 seconds for 1 Hz devices

(*) Simplified presentation
Basic concepts of GPS based lap timers

Summary

• There is no "good enough accuracy"; GPS accuracy always needs to be optimized to the best possible.

• Even when doing everything right, there may be drop outs on some days of the year (Sun eruptions, atmospheric disturbances, etc.)

• To allow Lap Timer to operate automatically, load the track day's track configuration (track set) ahead of the session.

• Even for low update rate receivers like those built into recent smart phones, timing accuracy better than 0.05 seconds is feasible.

• Higher update rate receivers (5, 10, 20, 50 Hz available) improve operation and accuracy.
Train the Trainer

Agenda

① Basic concepts of GPS based lap timers
② Prepare Lap Timer for operation
③ Help users to read their data
④ Q&A
Prepare Lap Timer for operation

Self Check

- For common issues, **Lap Timer has self checks built in**
- The status bar shows a **yellow or red alert** in case an issue is detected that will **keep Lap Timer from working**
- In case a **red alert appears**, always check the reason by tapping the status; in general, "red" means Lap Timer will not function properly
- For issues found, **Lap Timer displays the reason and a solution**
Prepare Lap Timer for operation

Other Topics

- Take care the smart phone has a **power supply** attached

- During serious racing, please discourage video operation; video operation adds additional system load that potentially overheats the device or fills up memory completely

- **Incoming calls will interrupt the application**
 - Forward incoming calls to the mailbox
 - iOS: Settings › Phone › Call Forwarding
 - Android: Phone › Options Button › Call Settings › Call Forwarding
 - Using Airplane Mode will not work as it disables Location Services

- It is recommended to kill / stop any apps running in background and accessing GPS (navigation, motion logs)
Train the Trainer
Agenda

1. Basic concepts of GPS based lap timers
2. Prepare Lap Timer for operation
3. Help users to read their data
4. Q&A
Help users to read their data

Introduction

• Truth is, most occasional track day visitors face problems to improve their driving style based in data recorded.
• This section shows a wealth of analytic tools built into Lap Timer and how to "read" them.
• Compared to classic logger / analytics approaches, Lap Timer allows complete "in-car" analysis greatly speeding up the learning curve.
• All data formats and interfaces used in Lap Timer are fully interoperable between iPhone / iPad / Android devices; in addition, data can be exported to desktop systems.
Help users to read their data

Predictive lap timing

• Predictive lap timing (Gap calculation) allows real time comparison between the current lap and any reference lap recorded before.

• Reference lap can be the best lap, the last lap, or any lap marked as reference lap (Set).

• Prediction is calculated by comparing the current time with the time at the current position when driving the reference.

• Sample: behind reference is shown with a "+" and red background (+00.21); the green street means driver is improving currently.

• Prediction is available both on lap and sector level.
Help users to read their data
Lap2Lap comparison

- **Accumulated gap analysis** allows identification of **win / loss scenarios** easily:
 - A second (blue) axis displays time lost or made good
 - **Steep changes** for the gap indicate areas to analyze in detail

- **Parameters recorded can be drilled-down, and compared to reference laps**

- **Lap2Lap comparison views available** include
 - Line driven GPS
 - Min, max speeds GPS, OBD
 - Speed GPS, OBD
 - Overall, lateral, longitudinal acceleration ACCEL
 - Yaw rate GPS
 - Height GPS
 - Engine rpm OBD
 - Throttle OBD
 - Oil and coolant temperature OBD

- Select any lap from Lap List and scroll to the **Data Recordings section** to find the options

(c) 2014 Harald Schlangmann
Help users to read their data

Multi lap comparison

- Multi lap comparison is used to understand the general lap and sector time development
- Blue and red are improvement and best times
- Identify areas to improve from sector to sector development and virtual best calculation
- Laps compared can be selected by track, time, and car

Colors outdated, latest version uses green instead if red for best times / sectors.
Help users to read their data

G-G chart

- G-G charts are well suited to understand driver maturity

Beginner, acceleration (except full throttle) potential not used

Beginner, "preferred cornering" visible (right corners faster)

Advanced, combined lateral / lineal acceleration not used

Advanced, roll phases are largely eliminated (limited center dots)
Help users to read their data

Challenges

• Challenges allow the **exchange of data** between drivers
• Using challenges, **complete recordings** are exchanged
Help users to read their data

Data Export

• Various **data exports** are provided to allow **external analysis**
 – CSV is a **versatile** and complete export of all data recorded; use for any post processing and video overlayers
 – HLPTR is Lap Timer's **own format** and is the only one allowing both export and import; use for data exchange and **backup / restore**
 – KML is Google's format displayed in **Google Earth** and Google Maps; Google Earth allows various view selections and drill-downs
 – VBO (and NMEA) are **logger formats**; use for Racelogic's Circuit Tools 2 and other desktop analytic tools
Train the Trainer

Agenda

1. Basic concepts of GPS based lap timers
2. Prepare Lap Timer for operation
3. Help users to read their data
4. Q&A
Pilot's Check List

Summary

⚠️ To summarize all critical items mentioned in this presentation, here is the Pilot's Check List to go through before "Take Off":

✅ Make sure the **latest app version** is installed from the stores
✅ Always **use a mount and a power supply**
✅ Make sure you get **best possible GPS accuracy**
✅ Make sure a proper **Track Set is loaded** and conflict free
✅ For external sensors, verify they update as expected
✅ Make sure **acceleration shows zero** while in the pits
✅ Make sure you have **forwarded incoming calls to the box**